Small capsid protein pORF65 is essential for assembly of Kaposi's sarcoma-associated herpesvirus capsids.

نویسندگان

  • Edward M Perkins
  • Daniel Anacker
  • Aaron Davis
  • Vishwam Sankar
  • Richard F Ambinder
  • Prashant Desai
چکیده

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent for KS tumors, multicentric Castleman's disease, and primary effusion lymphomas. Like other herpesvirus capsids, the KSHV capsid is an icosahedral structure composed of six proteins. The capsid shell is made up of the major capsid protein, two triplex proteins, and the small capsid protein. The scaffold protein and the protease occupy the internal space. The assembly of KSHV capsids is thought to occur in a manner similar to that determined for herpes simplex virus type 1 (HSV-1). Our goal was to assemble KSHV capsids in insect cells using the baculovirus expression vector system. Six KSHV capsid open reading frames were cloned and the proteins expressed in Sf9 cells: pORF25 (major capsid protein), pORF62 (triplex 1), pORF26 (triplex 2), pORF17 (protease), pORF17.5 (scaffold protein), and also pORF65 (small capsid protein). When insect cells were coinfected with these baculoviruses, angular capsids that contained internal core structures were readily observed by conventional electron microscopy of the infected cells. Capsids were also readily isolated from infected cells by using rate velocity sedimentation. With immuno-electron microscopy methods, these capsids were seen to be reactive to antisera to pORF65 as well as to KSHV-positive human sera, indicating the correct conformation of pORF65 in these capsids. When either virus expressing the triplex proteins was omitted from the coinfection, capsids did not assemble; similar to observations made in HSV-1-infected cells. If the virus expressing the scaffold protein was excluded, large open shells that did not attain icosahedral structure were seen in the nuclei of infected cells. The presence of pORF65 was required for capsid assembly, in that capsids did not form if this protein was absent as judged by both by ultrastructural analysis of infected cells and rate velocity sedimentation experiments. Thus, a novel outcome of this study is the finding that the small capsid protein of KSHV, like the major capsid and triplex proteins, is essential for capsid shell assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional localization of pORF65 in Kaposi's sarcoma-associated herpesvirus capsid.

Of the six herpesvirus capsid proteins, the smallest capsid proteins (SCPs) share the least sequence homology among herpesvirus family members and have been implicated in virus specificity during infection. The herpes simplex virus-1 (HSV-1) SCP was shown to be horn shaped and to specifically bind the upper domain of each major capsid protein in hexons but not in pentons. In Kaposi's sarcoma-as...

متن کامل

The assembly domain of the small capsid protein of Kaposi's sarcoma-associated herpesvirus.

Self-assembly of Kaposi's sarcoma-associated herpesvirus capsids occurs when six proteins are coexpressed in insect cells using recombinant baculoviruses; however, if the small capsid protein (SCP) is omitted from the coinfection, assembly does not occur. Herein we delineate and identify precisely the assembly domain and the residues of SCP required for assembly. Hence, six residues, R14, D18, ...

متن کامل

Direct visualization of the putative portal in the Kaposi's sarcoma-associated herpesvirus capsid by cryoelectron tomography.

Genetic and biochemical studies have suggested the existence of a bacteriophage-like, DNA-packaging/ejecting portal complex in herpesviruses capsids, but its arrangement remained unknown. Here, we report the first visualization of a unique vertex in the Kaposi's sarcoma-associated herpesvirus (KSHV) capsid by cryoelectron tomography, thus providing direct structural evidence for the existence o...

متن کامل

Three-dimensional structures of the A, B, and C capsids of rhesus monkey rhadinovirus: insights into gammaherpesvirus capsid assembly, maturation, and DNA packaging.

Rhesus monkey rhadinovirus (RRV) exhibits high levels of sequence homology to human gammaherpesviruses, such as Kaposi's sarcoma-associated herpesvirus, and grows to high titers in cell cultures, making it a good model system for studying gammaherpesvirus capsid structure and assembly. We have purified RRV A, B, and C capsids, thus for the first time allowing direct structure comparisons by ele...

متن کامل

Improper Tagging of the Non-Essential Small Capsid Protein VP26 Impairs Nuclear Capsid Egress of Herpes Simplex Virus

To analyze the subcellular trafficking of herpesvirus capsids, the small capsid protein has been labeled with different fluorescent proteins. Here, we analyzed the infectivity of several HSV1(17(+)) strains in which the N-terminal region of the non-essential small capsid protein VP26 had been tagged at different positions. While some variants replicated with similar kinetics as their parental w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 82 14  شماره 

صفحات  -

تاریخ انتشار 2008